

Enhancing the looks of Source™ Engine in

Military Conflict: Vietnam

Dmitriy Andreev

Dmitriy Andreev

Feb. 2021, edit 3

Bachelor’s degree in Applied informatics and Information Security

Abstract

Military Conflict: Vietnam is a multiplayer first-person shooter game running on

Valve’s Source™ 1 Engine. Engine was chosen due to high amount of resources, simplicity of

testing gameplay mechanics, building prototypes and because of large community around

Source™ games. Still, engine was lacking many of modern visual techniques and effects and

my task was to make the game look up-to-date without any fundamental changes to renderer

and keep the frame rate as high as possible.

This paper will cover shaders written for Shader Model 3.0 and running under DX9

API. The techniques covered will involve HDR Rendering, lighting and shadowing, procedural

sky, my attempts to optimize and re-use the same effects in multiple scenes, and simple post-

process effects to give little touches to final look of the game. Keep in mind that modern

engines already have all those features and do them at way more advanced level, everything

written here only relevant to Source™ or similar DX9 engines.

I would appreciate any feedback at dmitrex@dmitrex.com

mailto:dmitrex@dmitrex.com

Acknowledgements

I would like to mention that this work has been made possible thanks to many people

– especially from gamedev.net community who have shared many useful articles and code

samples.

I would also like to thank CEO of DustFade Studio, Kai Sidler, who has provided the

opportunity to do this work in first place.

Big thanks to Valve Software for answering engine-related questions and even

providing me code samples and fixes.

I would also like to thank my friends that have given corrections to the paper and

provided me with useful feedback.

Contents

1 Introduction... 1

2 Floating Point HDR and Bloom .. 2

2.1 Floating Point HDR .. 2

2.2 Five-Pass Bloom .. 4

2.3 Filmic Tonemapping .. 7

2.4 Fireflies .. 8

3 SMAA ... 9

3.1 SMAA in Source™ .. 9

3.2 Unsharp Mask ... 11

4 Procedural sky ... 13

4.1 Hosek-Wilkie Model .. 15

4.2 Sun ... 17

4.3 Night .. 18

4.4 Volumetric Clouds ... 19

4.5 Cloud Lighting .. 22

4.6 Optimization .. 24

4.7 Combining results and High-Altitude Clouds .. 25

4.8 Sky Preview in Hammer Editor .. 26

5 Depth-based Effects and Sub-views Reprojection .. 27

5.1 Soft Particles ... 27

5.2 SSAO and view model depth hacks ... 27

5.3 Temporal SSAO .. 31

5.4 RT Cameras and sub-views reprojection ... 33

5.5 Depth buffer optimization tricks ... 37

6 Volumetric Lighting ... 39

6.1 Sun Shafts .. 39

6.2 Height Fog ... 39

6.3 Future Work .. 40

7 Parallax Mapping ... 41

7.1 Interval Mapping ... 41

7.2 Future work ... 45

8 Additional Effects .. 47

8.1 Barrel Distortion .. 47

8.2 Bokeh Depth of Field ... 49

8.3 Motion Blur ... 50

8.4 Subsurface Scattering .. 51

9 Conclusion and Future Work .. 53

9.1 End Result and Performance .. 53

9.2 Future Work ... 55

References ... 59

Glossary

MCV – short for Military Conflict: Vietnam

DX9 – short for DirectX™ 9

Shader Model - a set of profiles found in a generation of GPUs.

Frame-rate - how many frames (or images) per second are displayed on screen.

2D - short for 2-Dimensional.

3D - short for 3-Dimensional.

HDR – short for High Dynamic Range

LDR – short for Low Dynamic Range

Polygons - any 2D shape defined by three or more straight lines (triangle, square,

pentagon, ...). Used extensively in computer-graphics to define and render shapes.

FP16 – floating point 16bit image format.

Render-pass - to create a fully rendered scene, the rendering is usually separated

into multiple renderpasses, where each render-pass can perform separate tasks. For

example, when creating shadows, there are usually at least two render-passes, one that

from the light-source’s perspective calculates and stores the depth into a depth-map

rendertarget, and one that uses the depth-map to apply the shadows when rendering

objects to the screen.

Render-target - a run-time image used to store rendered information. An example

of a render-targets is the shadow-map, a render-target that usually contains the depth

values for objects in relation of the light’s direction.

Render-time - the amount of time that it takes to draw the image to the screen,

measured in milliseconds for the entire thesis.

RGBA - red, green, blue and alpha. Frequently used to store pixel data for images,

where different combinations of these colors can form any other color. However, in this

thesis, these color channels are often used individually to store some attribute.

Screen-space - space used to specify where an object is in relation to the screen.

Therefore, it can be used to specify where an object is on the screen.

Viewing-ray - the ray that can be seen as a combination of the cameras direction

and the pixel that is currently being rendered.

Ray marching - is a ray intersection test in which you step along a until an

intersection is found.

Volumetric clouds - a way of representing clouds in 3D. The part “volumetric” does

not specify a specific method, just that the clouds have a volume with some density.

Procedural generation – is a method of creating data algorithmically as opposed to

manually, typically through a combination of human-generated assets.

FBM - fractional Brownian motion, fractal noise, but with some sort of memory to

the process of generation.

Draw Call - is the command that tells the GPU to render a certain set of vertices as

triangles with a certain state.

1

1 Introduction

Military Conflict: Vietnam (or MCV) – is a multiplayer game. This is important

clarification, because working processes are more difficult, algorithms and performance

targets are quite different from similar singleplayer projects. During development of the

game, we have determined main directions which we want to go with graphics improvements

and performance goals. There are a lot of limitations and performance issues can be met

under DX9 API, yet, plenty of work still can be done:

- One of most annoying problems is outdated implementation of HDR and

bloom. Source™ supports textures which can emit light, but they don’t look like they do it, in

other words, do not glow – level designers have to draw custom “glow” textures for each

prop/brush/particle which emits light and apply it on top of them. This usually cause problems

like glow sprite’s shape do not match light source’s shape or sprite popping through walls.

- Sky. Skyboxes used in Source™ - is very old tech and have various drawbacks.

One of them is corners – player can still see sky’s corners even if they match perfectly. The

other is that the sky is completely static – even if you decide to use scrolling cloud textures

you would better make a sphere, representing your sky, and put it inside 3D skybox, otherwise

previously mentioned problem will pop in.

- Lighting. Lighting in Source™ has improved a lot since initial Half-Life 2™ release

in 2004, though, it was lacking dynamic effects, such as dynamic ambient occlusion and

volumetric light. Adding these effects would give level designers more freedom in expressing

their ideas, make lighting more detailed and overall look of the game fresher.

- Texture detail can be improved using parallax mapping. This is very old

technique, but only a few implementations can live in real game, not only in dev levels. We

have decided to look towards Interval Mapping, an expansion to Relief Mapping, as fastest

and most detailed algorithm possible in DX9.

- Post-effects play big role in final look of the game as well. They can make final

image look sharper, detailed, or add fancy screen-space effects like lens flares and contusion

after explosion. Post-effects play their role in gameplay as well – various effects may appear

on screen when player takes damage, low on health or inside smoke/gas cloud.

Apart from new effects themselves, there is performance target which must be met.

Game supposed to work at 1920x1080@60fps with maximum settings on 2016’s middle-end

hardware. Taking in account that we’re working under DX9 API this makes things even harder

and cuts on number of rendering techniques or shaders we can implement. Though, we have

to find ways to optimize/combine several major techniques and make them work inside

Source™ engine fast enough.

2

2 Floating Point HDR and Bloom

HDR Rendering is a feature of the Source™ Engine since Half-Life 2™: Lost Coast

release (Accardo, 2005). However, Valve has preferred their own Integer HDR implementation

over floating-point one as the fastest and most supported by all hardware at that time

(McTaggart, 2006). Despite all the cons it had, the scene was still rendered in LDR and bloom

existed only in bright parts of skybox or from very bright light sources (ex. Light blasting through

the window in dark room). After a decade since then, software and hardware have improved a lot so I

decided to give Floating Point HDR second chance.

2.1 Floating Point HDR

The principle behind Floating Point HDR remains unchanged since then. Moreover,

big part of the code already existed in engine, so I mostly had to just enable it.

Figure 1: HDR pipeline graph from “HDR in Valve’s Source Engine” (McTaggart, 2006)

Frame buffer and bloom buffers are now using FP16 format, image is tonemapped

back to LDR using Filmic Tonemapping. MSAA quality got worse, which is DX9 API limitation,

but it’s not a problem for us since screen resolution of majority of users increased a lot over

decade, plus, an additional SMAA pass is performed after.

3

The following pictures show difference between Valve’s original HDR (figure 2) and

Floating Point HDR in MCV (figure 3), which is based off Valve’s leftover code. Note that we

are not using HDR skyboxes anymore – our sky is completely procedural.

Figure 2: This is how Valve’s HDR looks in MCV – colors are vanished, bright areas are

just pure white. Level designers have to apply custom-shaped glow sprites to all objects in

scene which are supposed to “glow”.

Figure 3: Floating Point HDR – More color variations, bloom is now taken in account

and makes bright areas stand out and glow. As well other effects like Lens Flare can now utilize

HDR bloom buffer to detect bright pixels and generate flares from them. MSAA quality

difference is negligible.

4

2.2 Five-Pass Bloom

Bloom pass has undergone changes too, because switching to FP16 HDR opened a

couple of new opportunities. Bloom is a real-life lens artifact and used in games to indicate

that an object is emitting light. However, the implementation of bloom may differ from engine

to engine (or from game to game). In Source™ bloom is performed in LDR space and applied

to every pixel which has luminosity value close to 1.0. Bloom appears if tonemapping, or, in

other words, eye adaptation scale is higher than 1.0 and when tonemapping scale is near or

lower than 1.0 – bloom disappears completely even from objects which are still should be

glowing. Here is an example (figure 4):

Figure 4: Lamp is emitting light, but is not “glowing” unless glow sprite is added

This lamp is supposed to glow, but Valve’s HDR still works in LDR [0..1] color space so

there is no way to determine bright pixels. Valve “fakes” bloom on such objects by using high

tonemapping (eye adaptation) scale, but since the room is illuminated enough – the eye

adaptation scale is low and hence the lamp is not glowing as well. The only way to make this

lamp constantly glow is to add a pre-drawn sprite with “glow” texture.

In MCV we prefer different option – bloom blends with HDR image “as-is” without

any tonemapping scales and thresholds, the amount of blending is calculated from luminosity

of pixel from original HDR image. There is also an artist-driven parameter which can modify

blend weight and make bloom appear only at very bright pixels (or vice versa: make whole

image glow – depends on artist’s wish). This way glowing objects in scene will always remain

glowing, no matter what current tonemapping scale is.

5

Figure 5: This is the result of Floating Point HDR + New Bloom working together. Pixels

with high luminosity values make bloom contribute to final image, while the rest of the scene

remained as-is. In the end – lamp glows by itself, no need to use “glow” sprites anymore.

Figure 6: See how illuminated part of barrel glows on sun – you will never get this

result by using sprites from 1998.

The rest of the bloom is similar to the one from Unreal Engine 4 (Epic Games, 2014).

There are 5 passes at each of them scene is downscaled to 1/2 of image size from previous

pass and blurred using wider gaussian kernels. So, 1st pass bloom has size 1/2 of user’s screen

resolution and very small blur kernel and then 5th pass has size 1/32 of screen resolution and

very wide kernel.

6

While the result was very nice, it introduced a new problem - bloom from very bright

sources was aliased (figure 7):

Figure 7: Aliasing bloom artifact

To fix this, I introduced another, 6th pass, where I combine all previous 5 passes, apply

another small gaussian blur and bilinearly upsample the result back to full-size. Artifacts are

not fully gone, but now never visible 99% of the time.

After main work with bloom was finished, I decided to add a little touch to the sun

and wrote simple starburst shader (figure 8):

Figure 8: Starburst. Original Shadertoy: https://www.shadertoy.com/view/tlfyRS

https://www.shadertoy.com/view/tlfyRS

7

Rays length depends on player’s viewing angle and how clearly sun can be seen

through the sky. Since our sky is procedural, I had to cache the clouds map and use it as a mask

for starburst effect.

2.3 Filmic Tonemapping

At the end of HDR rendering pipeline tone mapping is usually performed to convert

HDR image to resulting LDR image. This is needed, because majority of user’s monitors do not

support HDR displaying yet. There are many tonemapping algorithms that can be found

around on the Internet (HABLE, 2010). I preferred the “Filmic” ones, especially ACES, for their

“photorealistic” result.

In Source™ tonemapping (or eye adaptation) performs at the end of rendering of

each object in scene, but since we’ve moved to Floating Point HDR and want to have HDR

Bloom, we had to defer tonemapping process and do it as post-effect at the end of rendering

pipeline after bloom pass. This also allowed us to add various effects to pre-tonemapped and

post-tonemapped images. For example: if you implement any bloom-based Lens Flare effect

to a game with old HDR pipeline then you will notice that brightness of flares will change along

with tonemapping scale, which is incorrect and there is no optimal solution to this problem.

Now, in MCV we have pre-tonemapping stage and post-tonemapping stage – we simply apply

Lens Flare before tonemapping and effect stays the same no matter of what current

tonemapping (or eye adaptation) scale is.

To be more precise, I’ve preferred ACES Filmic Tone Mapping operator (Narkowicz,

2016). After multiple tests it was chosen for providing the most “natural” colors:

Figure 9: Default look without Filmic Tonemapping

8

Figure 10: Filmic Tone mapping enabled – green is now greener, black is now darker,

overall colors look more alive, removed “foggy” look of the scene.

Of course, level designers should keep in mind that lighting must be reconfigured

according to new algorithm, otherwise some scenes may look incorrect.

2.4 Fireflies

Due to image undersampling, the new artifact appears, called “Firflies” (Jimenez,

2014), (figure 11). To reduce it, we apply Karis's luma weighted average to first pass of bloom

(while downsampling from full to half-res). It reduces high spikes of brightness for single pixels.

Figure 11: Random firefly appeared out of nowhere

9

3 SMAA

SMAA is a post-processing Subpixel Morphological Antialiasing algorithm. In MCV it’s

aimed to give additional aliasing to situations where hardware MSAA is not working. Source

code and description can be found here: https://github.com/iryoku/smaa

3.1 SMAA in Source™

MSAA is good hardware anti-aliasing algorithm, but switching to HDR pipeline made

an impact on its quality. Moreover, it doesn’t work with translucent objects. and off-screen

buffers in DX9, which is a problem especially since MCV is using many aspects from Deferred

Rendering pipeline. To solve this, I’ve decided to try various post-processing anti-aliasing

algorithms. FXAA was not the option since it makes the image very blurry. It can be negated

by using Unsharp Masking, though, but still end result was not as good as with SMAA.

For MCV, I went with simplest version – SMAA 1x. T2x is possible to implement in DX9

as well, but it requires generating of per-object velocity buffer for each pixel on screen. This is

not hard task, especially when you have a working GBuffer, but you need to cache all matrices

for every bone of every model in scene from previous frame. This requires big amount of

vertex shader registers: for a skinned object engine reserves 156 float4 registers, plus another

156 you would need as data from previous frame. Add to this lots of other data like lighting,

flex weights, model/view projection matrices etc. and you will exceed vertex shader constant

register limit very easily. With that in mind, I’ve decided to cut velocity buffer and use SMAA

1x only. But on the good side, SMAA predication and stencil optimizations are still there and

the shader can be combined with hardware MSAA to achieve better results. For example,

MSAA 4x + SMAA 1x could save a few milliseconds of rendering time (Table 1), but remain

same or better AA quality.

Images below (figure 12 and figure 13) represent the difference when SMAA is

applied and not, both have MSAA 8x enabled:

https://github.com/iryoku/smaa

10

Figure 12: MSAA 8x, SMAA disabled, jagged edges can be seen on palm leaves

Figure 13: MSAA 8x, SMAA 1x. Jagged edges are noticeably smoothed out

While implementing this shader to Source™, I faced one interesting problem - SMAA

uses two helper textures: area texture and search texture. While search texture is fine, the

area texture has unusual for Source™ Engine size: 160x560px. There is no way for engine to

read such texture easily, so I had to convert it to 256x1024 by adding black areas around

source image (figure 14).

11

Figure 14: SMAA area texture hack

I also had to change the offset value inside “float2 SMAAAreaDiag(…)” from 0.5 to

0.3125 due to area texture size change. This shouldn’t affect anti-aliasing since shader just

searches 20x20px areas no matter what size the area texture has itself.

Here are what image formats were used for various SMAA render targets:

AreaTex - AL88

SearchTex - L8

EdgeDetection - BRGA8888

BlendWeights - BRGA8888

Also note that shader compilators in earlier engine versions (before L4D2) will fail to

compile SMAA – you have to use compilators from Alien Swarm codebase at least.

3.2 Unsharp Mask

SMAA blurs image as well, but not as much as FXAA. Still, I added an artist-driven

unsharp mask shader to neutralize blurring + gain more sharp details even when SMAA is

turned off. Unsharp mask works simply by blurring an image and then adding difference

between blurred and original results with given weight back to original image.

 float3 blur = tex2D(blurredFBSampler, texuv).rgb;

 color = float4(color.rgb + (color.rgb - blur) * g_Strength, color.a);

Listing 1: Unsharp masking example

12

Figure 15: No unsharp masking

Figure 16: Unsharp masking applied

13

4 Procedural sky

Since Day One of MCV development there was a goal to make sky more alive. I went

through many approaches: billboards, scrolling textures, sky domes and decided to go with

the most challenging, but promising approach – volumetric clouds.

Procedural sky in MCV is a group of very complex post-process shaders consisting of

multiple passes while some of them use Temporal Reprojection technique. At first, we

calculate sky color from given sun position using Hosek-Wilkie model (Wilkie & Hosek, 2013),

then low-res cloud buffer is generated from 3D textures, then final combine pass.

Figure 17: Procedural sky in action

14

Figure 18: Procedural sky in action

Figure 19: Aggressive sky settings

Live demonstration - https://www.youtube.com/watch?v=Ot3oSOKH5qA

https://www.youtube.com/watch?v=Ot3oSOKH5qA

15

4.1 Hosek-Wilkie Model

The first shader in group and the base for procedural sky is a sky color model which

can generate day/night skies according to given sun position, turbidity and Earth’s reflectance

(albedo). Hosek & Wilkie’s analytical model was chosen as most realistic and up-to-date by

the time. Detailed info about their model can be found here:

https://cgg.mff.cuni.cz/projects/SkylightModelling/

Turbidity value (from 1 to 10) defines how much liquid particles are floating in the

sky, 1 - represents completely clear arctic-like sky, 10 - rainy/stormy sky.

Albedo (0.0-1.0) is how much light reflects from Earth's surface. Can brighten or

darken the sky.

But before performing any calculations, we need to setup a camera direction vector

first, it’s a bit tricky as we are working in post-process (listing 2).

Don’t forget to normalize it in pixel shader. “REFLECT_VIEW_RAY” block is needed if

you want the sky to appear on reflective surfaces (ex. water).

And in shader DLL matrices are computed like this (listing 3):

 // reconstruct using inverse projection multiplied by inversed rotation part of view matrix

 float4 cameraRay = float4(i.vTexCoord * 2.0f - 1.0f, 1.0f, 1.0f);

 cameraRay = mul(matInvProjViewrot, cameraRay);

 o.vCamDir = cameraRay.xyz / cameraRay.w;

 #if REFLECT_VIEW_RAY

 o.vCamDir.z = -o.vCamDir.z;

 #endif

 VMatrix matView, matViewInverse, matProj, matProjInverse, matResult;

 pShaderAPI->GetMatrix(MATERIAL_MATRIX_VIEW, matView.Base());

 pShaderAPI->GetMatrix(MATERIAL_MATRIX_PROJ, matProj.Base());

 // prevent image from stretching when camera moves too far from coord center

 matView.m[3][0] = 0.0f;

 matView.m[3][1] = 0.0f;

 matView.m[3][2] = 0.0f;

 MatrixInverseGeneral(matProj, matProjInverse);

 MatrixInverseGeneral(matView, matViewInverse);

 MatrixMultiply(matProjInverse, matViewInverse, matResult);

 pShaderAPI->SetVertexShaderConstant(VERTEX_SHADER_SHADER_SPECIFIC_CONST_0,

matResult.Base(), 4);

Listing 2: View direction reconstruction in post-process vertex shader

Listing 3: Calculate and load inverse view-projection matrix to shader

https://cgg.mff.cuni.cz/projects/SkylightModelling/

16

Figure 20: Turbidity 3 example

Figure 21: Turbidity 5 example

17

Figure 22: Turbidity 10 example

4.2 Sun

After skylight model is working, it’s important to simulate a realistic looking sun. DICE

has very interesting approach in simulating Sun and Moon (Hillaire, 2016), but I went with

simpler approach in order to save on rendering time. Sun color is computed using Preetham’s

sun radiance table according to given turbidity and angle above (Preetham, Shirley, & Smits,

1999). The limb darkening code was taken from DICE’s paper, Listing 7.

Figure 23: Sunset

18

Figure 24: Sunset with different turbidity value

4.3 Night

There wasn’t any goal of making real-time day-night cycle, but night maps were still

in plans, so the next step was to create the night sky.

Night sky doesn’t use any complex lighting model, it’s just a spherical texture mapped

on a screen-space quad and a bluish light added near horizon.

Figure 25: Night sky at various sun positions

19

Figure 26: Night sky at various sun positions

Spherical texture can be mapped on screen space quad very easily (listing 4).

You can use this trick for daylight sky too and replace old skyboxes with simple post-

process shader which will render spherical textures for you.

4.4 Volumetric Clouds

Second shader in a group of procedural sky shaders is volumetric clouds. This shader

can generate stratus, cumulus and stratocumulus clouds. Clouds are ray-marched and heavily

based off Horizon Zero Dawn's system and their code samples (Schneider & Vos, 2015) and

GPU Gems 3 book. They are generated from 3 types of noises: 128x128x128 base 3D perlin-

worley noise for main cloud shape (figure 27), 32x32x32 detail worley noise (figure 28) and

128x128 2D curl noise (figure 29) to add effect of motion. Weather map (figure 30) is used to

determine coverage, type (stratus-stratocumulus-cumulus) and precipitation.

 float2 uv = float2(atan2(viewDirection.x, -viewDirection.y) / (PI * 2.0f) + 0.5f, acos(viewDirection.z) / PI);

Listing 4: Spherical texture mapping

20

Figure 27: Example of 128x128x128 perlin-worley noise

Figure 28: Example of 32x32x32 high-frequency perlin-worley noise

21

Figure 29: Curl, which supposed to give clouds effect of motion

Figure 30: Weather map

Code samples can be found in GPU Gems 3 book and on gamedev.net forums. One of

the greatest threads for this subject:

https://www.gamedev.net/forums/topic/680832-horizonzero-dawn-cloud-system/

Noise generation program can be found here by Sébastien Hillaire and M-A Loyer,

who made it according to information from GPU Gems slides -

https://github.com/sebh/TileableVolumeNoise.

My fork where I made this program compatible with Source’s vtex.exe can be found

here - https://github.com/DmitRex/TileableVolumeNoise

https://www.gamedev.net/forums/topic/680832-horizonzero-dawn-cloud-system/
https://github.com/sebh/TileableVolumeNoise
https://github.com/DmitRex/TileableVolumeNoise

22

This program and the shader support packed noise, which saves on shader

instructions (listing 5).

And the same for high-frequency noise (listing 6).

4.5 Cloud Lighting

Clouds shader does 256 main raymarching steps and for each step it does 5 additional

lighting steps. Lighting is described in HZD's paper as well. In EA’s paper (Hillaire, Physically

Based Sky, Atmosphere and Cloud Rendering in Frostbite, 2016) you can find more info about

usage of beer's law and Henyey-Greenstein’s functions.

#if PACKED_NOISE

 float base_cloud = tex3Dlod(CloudNoiseTex, float4(coord3D.xy, height_fraction, lod)).r;

#else

 float4 low_freq_noise = tex3Dlod(CloudNoiseTex, float4(coord3D.xy, height_fraction, lod));

 float low_freq_fbm = (low_freq_noise.g * 0.625f) + (low_freq_noise.b * 0.25f) + (low_freq_noise.a *

0.125f);

 float base_cloud = Remap(low_freq_noise.r, -(1.0f - low_freq_fbm), 1.0f, 0.0f, 1.0f);

#endif

#if PACKED_NOISE

 float high_freq_FBM = tex3Dlod(CloudHighFrqNoiseTex, float4(coord3D.xy * g_NoiseScale3D.w,

height_fraction, lod)).r;

#else

 float3 high_frequency_noises = tex3Dlod(CloudHighFrqNoiseTex, float4(coord3D.xy *

g_NoiseScale3D.w, height_fraction, lod)).rgb;

 float high_freq_FBM = (high_frequency_noises.r * 0.625f) + (high_frequency_noises.g * 0.25f) + (

high_frequency_noises.b * 0.125f);

#endif

Listing 5: Example usage of packed and non-packed low-frequency noises

Listing 6: Example usage of packed and non-packed high-frequency noises

23

Figure 31: Sky with beer-powder function used only

Figure 32: Sunset clouds with both Beer’s Law and Henyey-Greenstein’s functions

applied

Of course, optimizations are taken in account, lighting passes are skipped when no

cloud was found or cloud is fully opaque already, etc.

After the lighting is done, clouds are tonemapped using Filmic Tonemapping operator

to prevent bloom buffer from flooding with very bright pixels.

24

4.6 Optimization

Cloud shader does 256 * 5 raymarching steps in worst possible case. Though, it’s quite

rare situation, this is still heavy workload for a GPU. Not taking in account shader algorithm’s

optimizations, there are two main ways to optimize it: lower the resolution and use temporal

reprojection (Schneider & Vos, 2015).

Temporal reprojection is a technique which allows to render an effect during N

frames. Clouds in MCV are rendered during 16 frames and combined with the result of

previous frame. It means that during each frame only 1/16th part of screen is rendered, while

the rest is re-used from previous frame or from some failsafe very-low res buffer. Failsafe

buffer is mostly needed when player’s view direction changes suddenly (ex. player turns back

fast).

First of all, I lowered resolution of clouds to 1/4th of user’s screen size, still framerate

barely went above 30FPS, so the next step was adding temporal reprojection. With it, each

frame we render only 1/16th of this buffer. Let’s say, user has resolution 1920x1080, then

clouds buffer gets size 480x270 and then only 32x16 part of this buffer is rendered per-frame.

This brings maximum possible performance while having ~ok~ quality. Still, artists must use as

low marching steps as possible to improve performance even more. As a result, all these

optimizations together did enormous performance boost and made it possible to work in a

multiplayer shooter in first place (Table 1).

Figure 33: Reprojection process can be very clearly visible in Hammer Editor.

As you can see on picture above (figure 33), the reprojection process is very obvious,

but it can be hidden using cross-pattern pixel selection (Häggström, 2018), for example, I

prefer Bayer Pixel Writing - https://www.shadertoy.com/view/4tVcRm

https://www.shadertoy.com/view/4tVcRm

25

4.7 Combining results and High-Altitude Clouds

After sky and clouds finished rendering it’s time for last combine pass. This pass didn’t

exist in original implementation, it appeared as a consequence of cloud shader’s over-

complexity – DX9 compiler simply could not compile so big and complex shader.

Figure 34: High-altitude clouds

Figure 35: High-altitude clouds in Hammer Editor

26

High-altitude clouds (figure 34) is an additional simple layer of clouds which is added

during combine pass and moving with different direction and at different height. These clouds

are sharing the same lighting model as volumetric ones.

There are could be additional effects like God Rays, but they were cut for

performance reasons.

Figure 36: Final result with skylight model and both types of clouds combined

4.8 Sky Preview in Hammer Editor

In the end, procedural sky was looking very good, but the shader and controlling

entity had more than 20 various settings, so I was concerned about adding a GUI to control it

in real-time. But instead of creating my own UI, I decided to go with Hammer Editor (figure

32, figure 35). Hammer support was very easy to add, since procedural sky is just a group of

post-process shaders, so I just drawn them before rendering actual world. To make sky easier

to configure, I also enabled fog rendering inside Hammer. The only drawback here is that you

have to disable skybox visgroup to configure the sky and then enable it back before compiling.

27

5 Depth-based Effects and Sub-views Reprojection

Despite that several major features were already added to renderer, there was a

room for improvement in depth-based effects and lighting. All of them are well-explained in

books and papers, but in our case, there is much more work behind them – we have to render

effects not only in main view, but in some sub-views as well.

5.1 Soft Particles

Soft particles is a very old engine feature, still it has never been used in games as it

requires high precision depth buffer which Source™ always had problems with. In MCV we

have high-precision 24-bit hardware depth buffer with 8 additional bits reserved for stencil.

Connecting this to leftover soft particles code already provided desired result (figure 37).

Figure 37: Soft particles

5.2 SSAO and view model depth hacks

SSAO has been popular way to add self-shadowing to objects for a decade already. In

Source™ it’s already performed gently: vrad.exe does additional self-shadowing steps and

models can use special pre-drawn SSAO masks. Nonetheless, we were looking for a real-time

approach to save on texture memory, map compile time and improve on shadowing quality.

After trying many approaches, we’ve ended up using SAO, or Scalable Ambient

Obscurance - https://research.nvidia.com/sites/default/files/pubs/2012-06_Scalable-

Ambient-Obscurance/McGuire12SAO.pdf

https://research.nvidia.com/sites/default/files/pubs/2012-06_Scalable-Ambient-Obscurance/McGuire12SAO.pdf
https://research.nvidia.com/sites/default/files/pubs/2012-06_Scalable-Ambient-Obscurance/McGuire12SAO.pdf

28

Figure 38: Scene without SSAO

Figure 39: SSAO Enabled

29

Figure 40: SSAO Buffer

To improve performance, we downsample original depth buffer using checkerboard

pattern and use it in the shader instead. Downsampling process explained very deeply here:

https://eleni.mutantstargoat.com/hikiko/depth-aware-upsampling-2/

SSAO effect in general was pretty straightforward to add and there are a lot of open-

sourced examples on the Internet, but using hardware depth buffer had one serious drawback

– viewmodels rendering. View models is a special group of objects which are rendered on top

of final image with custom depth and FOV values. Figure 41 clearly show the issue:

Figure 41: Viewmodel is enormous and pokes through floor and walls

https://eleni.mutantstargoat.com/hikiko/depth-aware-upsampling-2/

30

If you try to render viewmodels with the same FOV and depth settings as for main

scene, then you will get the following:

Figure 42: Viewmodel is small now, wrongly placed in relation to camera and still

pokes through walls

Technically, this is not an issue, this how viewmodels should work and it may cause

major headache especially for people who are working with depth-based effects for the first

time. People tend to solve this problem differently: from not drawing SSAO on viewmodels at

all, to completely ditching viewmodels or render separate depth buffers specially for them.

However, there is another option I preferred most: viewmodel depth hack.

First of all, we decided to render our own software colored depth buffer for all future

depth effects. This makes a performance impact (we will try to optimize this and get of it later,

in section 5.5 of this paper), but for now we can control what we want to render to it and how

we want to do it. Plus, we can form a GBuffer later for any custom lighting effects. Now, since

we have two depth buffers (software and hardware), we can render viewmodel for hardware

depth regularly so it will look on screen as expected, but when we are going to render to

software depth we can fake depth values in pixel shader (i.e use depth settings from main

scene) – then in hardware depth buffer the viewmodel will appear as it should without poking

through anything, but SSAO will be generated from depth values we fed to pixel shader. This

will result in both correct view and correct SSAO at the same time, the only drawback here is

that you will still notice the extra shadow around gun if you get too close to the wall, as gun

would still have poked through it.

Below is an example of how this hack is implemented. First of all, we compute

required matrices on client using data from main scene (listing 7).

31

Then in pixel shader we simply do it like this way (listing 8):

Aside from that, there is one more important note to mention: we generate SSAO

map as post-effect, but apply it during the rendering of each object in each object shader. This

way it helps a lot with translucent objects, like when shadows can appear on top of fog, or

translucent windows. It also prevents alpha blending issues and even performance drops from

happening.

5.3 Temporal SSAO

Temporal SSAO is an expansion to original effect which aimed to reduce flickering of

distant pixels and improve performance. The principle behind it is that we generate shadows

from very low number of samples, but combine it with the result from previous frame. It will

introduce small ghosting around moving objects, but on the good side, since we blend two

frames, end result will appear less flickery when camera is moving.

#if (SSAO_VIEWMODEL_VIEWPROJ_HACK == 1)

 float4 vHackProjPos = mul(float4(i.vWorldPos, 1.0f), g_ViewProj);

 vDepth.x = vHackProjPos.z / vHackProjPos.w;

#else

 vDepth.x = i.vWorldPos_projPosZ.z / i.vWorldPos_projPosZ.w;

#endif

// save off view-projection matrix for rendering correct Z-values for SSAO depth buffer

viewModelSetup.zNear = mainView.zNear;

viewModelSetup.zFar = mainView.zFar;

VMatrix vSavedDepthProjMat, vSavedDepthViewMat, vSavedDepthViewProjMatrix;

viewModelSetup.ComputeViewMatrices(&vSavedDepthViewMat, &vSavedDepthProjMat,

&vSavedDepthViewProjMatrix);

pRenderContext->SetCustomViewProjectionMatrixForColorDepthPass(vSavedDepthViewProjMatrix);

// now, modify znear, zfar for correct rendering of viewmodels to hardware depth buffer

// doing it this way allows us to render viewmodels on top of the world correclty using original matrices while

having REAL z-values in SSAO color buffer,

// otherwise viewmodels will poke through walls in SSAO buffer or have incorrect depth

viewModelSetup.zNear = mainView.zNearViewmodel;

viewModelSetup.zFar = mainView.zFarViewmodel;

render->Push3DView(pRenderContext, viewModelSetup, 0, NULL, GetFrustum());

…

Listing 7: Computation of custom view-projection matrix for viewmodel depth hack

Listing 8: Computation of depth value from custom view-projection matrix

32

Figure 43: SSAO Normal Mode

Figure 44: SSAO Temporal Mode

As you can see on figure 44, shadows appeared way blurrier – it’s a result of using

very low SSAO quality settings (which improves performance), but if you wait a few frames -

multiple images will blend together and end result will look close to figure 43. You can find

more details about this feature here: https://bartwronski.com/2014/04/27/temporal-

supersampling-pt-2-ssao-demonstration/

https://bartwronski.com/2014/04/27/temporal-supersampling-pt-2-ssao-demonstration/
https://bartwronski.com/2014/04/27/temporal-supersampling-pt-2-ssao-demonstration/

33

5.4 RT Cameras and sub-views reprojection

Problem with viewmodels is not the only problem I met. When working on weapons,

especially on sniper rifles, we’ve decided to replace sniper scope overlays with a real-time

solution (figure 45).

Figure 45: Realtime scope example

We preferred to go with RT cameras. RT (render target) camera is a technique used

to render scene from custom point of view onto given surface. The main goal here is to make

it as cheap as possible without noticeable quality drop.

First optimization is that we don’t render RT scope when weapon is not scoped.

Second one is to use as low resolution as possible and do not redraw any effects for scope

view. Though that could be enough for a cheap camera, there was noticeable quality

difference: object receiving SSAO shadow now appears unlit and soft particles are rendering

without “softness”. Rendering separate depth and SSAO maps for scope cameras sounds like

an overkill even on paper, especially for a DX9 engine. But our implementation has one major

advantage: scope camera positioned and angled the same as main camera, only field of view

is smaller. Knowing that, we may attempt to re-project SSAO and depth maps from main scene

to scope camera view.

At first, we cache the colored depth map from main scene before viewmodels are

rendered to it. The cached version will be used as a replacement for original depth when

player will look through his scope camera. Then, we save view and projection matrices from

main scene and use them in re-projection process. In shader we branch the code for main and

sub- views and do reprojection (listing 9).

34

Where “BlendDiffuseLightWithSSAO” stands for (listing 10):

And while rendering actual depth map for main scene, the scope part of viewmodel

is skipped: we simply draw our previously cached pre-viewmodel depth buffer instead in scope

shader (listing 11, figure 46).

if(g_bSSAO)

{

 [branch]

 if(g_bSSAOSubViews)

 {

 float4 vSSAOProjPos = mul(float4(worldPos, 1.0f), g_MainViewProjMat);

 diffuseLighting = BlendDiffuseLightWithSSAOProj(diffuseLighting, vSSAOProjPos,

cScreenSize, g_SSAOParams);

 }

 else

 {

 diffuseLighting = BlendDiffuseLightWithSSAO(diffuseLighting, ComputeScreenPos(

i.vScreenPos), g_SSAOParams);

 }

}

float3 BlendDiffuseLightWithSSAOProj(in float3 diffuseLighting, in float4 vSSAOProjPos /*for sub views (ex.

sniper rt scope*/, in float4 vViewportMad, in float2 SSAOParams)

{

 float2 uv = (vSSAOProjPos.xy / vSSAOProjPos.w) * vViewportMad.xy + vViewportMad.zw;

 return BlendDiffuseLightWithSSAO(diffuseLighting, uv, SSAOParams);

}

Listing 9: Applying SSAO for sub- and main views

Listing 10: Calculating the re-projected texture coordinates for sub-views

#if(SCOPE_DEPTH_HACK)

{

 vDepth = tex2D(BackbufferDepthSampler, ComputeScreenPos(i.vScreenPos));

}

#endif

Listing 11: Trick to return pre-viewmodel depth values for scope shader

35

Figure 46: SSAO depth map with “skipped” scope part of rifle

As a result, we get the following (figure 47):

Figure 47: SSAO map re-projected from main scene to scope camera

Now, SSAO is visible through sniper scope at low cost without extra render passes

(Table 1). The only drawback is reloading animations – when gun is moving it can obscure part

of SSAO map and cause artifacts, but this issue is never noticeable in motion.

36

The same trick is done with soft particles. Math there is more complex, as particles

have multiple render modes and alignments (listing 12):

And the result (figure 48):

Figure 48: Soft particle appears correctly in Sniper RT camera without any extra depth

buffers and render passes

// for sub-views (rt scopes) use viewprojection matrix from main camera so particle can be projected correctly

#if (SUB_VIEW_DEPTHBLEND)

 #if ((ORIENTATION == 1) || (ORIENTATION == 3) || (ORIENTATION == 4))

 projPos = mul(float4(worldPos, 1.0f), g_MainSceneViewProj);

 #elif(ORIENTATION == 2)

 projPos = mul(float4(wpos, 1.0f), cModelViewProjMainScene);

 #else // ORIENTATION == 0

 // Screen-aligned case

 float3 viewPos;

 viewPos = mul4x3(v.vPos, cModelViewMainScene);

 float3 disp = float3(-x1, y1, 0);

 float tmpx = disp.x * sc_yaw.x + disp.z * sc_yaw.y;

 disp.z = disp.z * sc_yaw.x - disp.x * sc_yaw.y;

 disp.x = tmpx;

 viewPos.xyz += disp * rad;

 projPos = mul(float4(viewPos, 1.0f), cProjMainScene);

 #endif

#endif

Listing 12: Calculating re-projected from main scene position for Depth Blend in sub-
views

37

5.5 Depth buffer optimization tricks

Previously, we mentioned that we have two depth buffers: software 32-bit floating

point one and 24-bit hardware one. This allowed us to control what exactly we want to render

to it, solve viewmodel-related issues and, potentially, form a GBuffer for future Deferred

Lighting implementation. Unfortunately, performance with separate depth buffer was still not

good enough for us, so we had to ditch Deferred Lighting idea and try to remove software

depth pass as well, without breaking previously implemented features.

I come up with an idea that we can copy hardware depth result to our software buffer

and simply render viewmodels on top of it using previously mentioned hacks. This way we

only render viewmodels twice for our depth buffer, not the whole scene anymore. We still

have to make an extra copy of it before rendering viewmodels, so previously mentioned sub-

views tricks can work. And this worked, though, not as good as it’s supposed to.

First of all, alpha-tested renderables were missing from depth, and hence SSAO

buffers. This is because game updates hardware depth buffer before rendering translucent

objects. Moving update code after rendering translucents caused all of them to appear in

depth buffer and screw it up. So, what we did to solve this problem is that we manually iterate

through all translucent objects and collect alphatested ones in special container, then we

render them, then we update hardware depth and, at last, render the rest of translucents

(graph 1).

Graph 1. Sorting translucents pipeline to get correct depth buffer

Worth to mention as well that we have changed our software depth render target’s

depth mode to MATERIAL_RT_DEPTH_SEPARATE instead of MATERIAL_RT_DEPTH_SHARED

since operating depth values while having it in shared mode may corrupt original hardware

depth for some GPUs.

38

The next problem is that SSAO now is 1 frame late and cause noticeable trailing when

player moves camera aggressively. Previously, we rendered depth and SSAO buffers before

rendering main scene, but now we have to render SSAO after we finished rendering alpha-

tested renderables, hence we have to move SSAO to post-process again. This was an easy task

to do, though it may bring back artifacts with alpha blending or seeing SSAO through water

surface, but currently we are fine with that. We had a new issue with fog and had to manually

blend SSAO with it in SSAO shader, because fog is still applied per each object.

At the end of the day, after all major issues were solved, we have ditched extra depth

buffer render pass, but kept all goodies we have got with it. SSAO and depth effects were still

working, sniper RT scope camera reprojections and viewmodel hacks were working too, but

we saved a lot on not doing extra draw calls. Currently, if player have RT scopes disabled, game

is not doing any extra draw calls apart from viewmodels, which is very good trade-off in terms

of performance. This allowed us to get 7-10% performance boost depending on hardware.

39

6 Volumetric Lighting

One of my latest major efforts was volumetric lighting. Main goal was to add rays

going from the sun which will not disappear if you do not look at them, like in early games, for

example, Crysis 1. But thanks to experience with Procedural Sky, we can utilize some of those

technologies to make something more complex than just god rays.

6.1 Sun Shafts

The only way for us to make god rays stay when sun is not in player’s point of view is

to use CSM’s shadowmap. We reconstruct world space position of pixels using depth map,

compute viewing direction and start ray marching from camera’s position. Then simply if we

didn’t hit CSM shadow – we add light, if we did – do not. Lighting model here is similar as in

Procedural Sky, end result is tonemapped as well.

Figure 49: Sun rays

In order to improve performance, we downsample our depth buffer to ¼ of screen

size and render rays to a ¼ buffer too. In the end we upscale image back to full size using

bilaterial upsampling.

6.2 Height Fog

Since we know world space position of each pixel on screen, we can determine what

pixels may have and what pixels may not have volumetric effects. Let’s say that pixels 256

units above the ground should not have fog and we will get result as on figure 50:

40

Figure 50: Height fog

6.3 Future Work

For now, the shader is only used for sun light, but it’s also possible to implement

support for point and spot lights. The drawback here will be a shadowmap: we don’t have

enough free resources to spend on generating shadowmaps for each point/spot light, so the

effect will look more like dynamic glow sprite, rather than proper volumetric light. Still, this is

something that could save us a couple of Draw Calls, since “spotlight”-sprites will not be

rendered anymore.

41

7 Parallax Mapping

Parallax mapping always been a dream for many Source™ developers, but only few

of them made it working in engine and even less of them used it right.

While looking through various implementations of this shader I saw many various

drawbacks and artifacts, most of them were due to the fact that people have used the simplest

and popular approaches. I’ve decided to go further and started looking for an advanced

approach and, luckily, found one – Interval Mapping (Risser, Shah, & Pattanaik, 2007).

7.1 Interval Mapping

Interval mapping is the one of most advanced DX9 techniques to create parallax

effect. It’s the same as Relief Mapping, but binary search was replaced with interval one, which

increases effect detail and performance.

Figure 51: Example of sand depth illusion created by Interval Mapping shader

Interval mapping allows us to achieve better visual results with the same amount of

iterations as with relief mapping (figure 52), or equal results using lesser amount of them

which helps a lot with performance in our already shader-heavy project.

42

Figure 52: Comparison between interval mapping (right) and relief mapping (left)

with five iterations taken in interval and binary search steps respectively.

But it doesn’t really matter what implementation do you prefer when it comes to

actual using the shader in maps. Almost every implementation will look good while the shader

is applied to plain surface and looked from near-perpendicular angle. This is not common

scene in games, many surfaces are not plain, non-perpendicular, can be looked at from variety

of angles, etc. Let’s apply parallax on a parallelepiped and see what might happen with it.

Figure 53: Simple parallelepiped

43

Let’s take a look at this simple parallelepiped (figure 53). From current perspective it

looks as expected, but if we actually step on it, we will see the following (figure 54):

Figure 54: Parallax distortion

Distortions will appear at the edges of brush – this is not shader’s fault, it’s a result of

vertex normals blending.

Figure 55: Parallax distortion closeup. Shader attempts to make the corner round

By default, vertex normals are always blended according to DirectX specifications, but

additionally map compilers can combine meshes which share common edge so their vertex

normals are blended together too.

44

Figure 56: Hammer Editor shows unmodified vertex normals

In Hammer Editor this process is not happening, so we can see the unmodified vertex

normals, which exactly what parallax shader requires for correct result. But if we compile the

map, we will see the following (figure 57):

Figure 57: In-game view of blended vertex normals

45

In-game we see that normals are now blended (figure 57) and this is the cause of

distortions. Here are a couple of ways how to solve it: remove smoothing via Smoothing Group

Window in Hammer Editor, disable smoothing at all during compile process if surface is using

parallax shader, or pass unmodified normals as additional array of data to shader. We

preferred 2nd option and trying to avoid complex surfaces when using parallax shader in

general.

7.2 Future work

Despite the fact that this shader became very complex with support of 4-way

blending, CSM and other engine features, there are still rooms for improvement. First of all is

silhouettes – if you look sideways at the object, you may notice that shader never takes

object’s edges in account. It just continues creating illusion of depth infinitely. Second problem

is lightmapping – for bumpmapped surfaces engine computes 3 lightmaps at given 3 directions

and then combines them into one (McTaggart, Half-Life® 2 / Valve Source™ Shading, 2004).

Given that in mind we need to calculate parallax UV coordinates for lightmaps as well, but this

is an overkill for performance and dozens of extra shader instructions. As better solution we

may possibly calculate parallax’ed lightmap coordinates during map compile process, but we

will have to keep both default and parallax’ed lightmap coordinates in memory in case user

wants to turn Parallax Mapping off.

46

47

8 Additional Effects

8.1 Barrel Distortion

Barrel distortion is a fisheye-type post-process shader which aimed to reduce image

stretching at high FOV values (Carpentier, 2015).

Figure 58: Example scene with FOV 150 and barrel distortion applied to neutralize

FOV artifacts.

Figure 59: Original unmodified image

48

Shader can also help at regular FOV values (ex. 75-90) (figure 60).

Figure 60: Regular scene with FOV 90

Figure 61: Same scene but with Barrel Distortion applied

Notice how objects near screen edges are now less distorted (figure 61). This can help

people with motion sickness play MCV for longer time.

49

You cannot render 360-degree panoramas, though, due to shader’s post-process

nature. At larger FOVs image will just break into pixels.

8.2 Bokeh Depth of Field

Bokeh DOF is another post-process shader, which works by generating CoC (circle of

confusion) map for near and far planes, similar to DOOM 2016 (Courrèges, 2016). Activated

mostly when players are using iron sights, or at scripted events.

Figure 62: Pentagon-shape blur

Figure 63: DoF when looking through the scope

50

8.3 Motion Blur

Motion Blur in MCV is a relatively simple technique. Originally, this post-process

shader supposed to utilize Velocity Buffer for every pixel in scene, but unfortunately, after we

got rid of GBuffer-pass it became highly unlikely to make possible.

Still, we generate screen-Velocity Buffer and do camera motion blur. Even with this

limitation, image is blurred in the direction of moving and objects at the edges of the screen

are blurred more than ones in the center.

Figure 64: Motion blur in action

Figure 65: Screen Velocity Buffer

51

8.4 Subsurface Scattering

Subsurface Scattering is very complex technique which, when done properly, requires

rendering additional buffers with object’s back sides in order to provide natural simulation of

light passing through an object.

Unfortunately, in MCV (and in DX9 in general) this technique is very simplified due to

API limitations and performance issues. Currently, it’s used only on Sniper Scopes, windows

and other objects where drawing back sides is not required: We ended up using

implementation as mentioned in this post: https://www.alanzucconi.com/2017/08/30/fast-

subsurface-scattering-1/

Figure 66: Sun light passing through sniper scope

https://www.alanzucconi.com/2017/08/30/fast-subsurface-scattering-1/
https://www.alanzucconi.com/2017/08/30/fast-subsurface-scattering-1/

52

53

9 Conclusion and Future Work

Putting all this work together was challenging task, because engine was not supposed

to handle so many different effects and something was constantly breaking or had

compatibility issues with old engine’s code. Though, after all serious issues were fixed, final

look of the game has changed dramatically. It doesn’t look like any other Source™ game

anymore and does run fast enough. Procedural clouds make the sky dynamic and alive,

volumetric lighting adds fine detail and creates unique atmosphere on map, lighting effects

and reprojection tricks create an impression of a modern looking game.

Figure 67: Final look of the game with SSAO, Volumetric Lighting, SMAA and other

effects working together

There are a couple of issues left here and there, which still need to be fixed, but in

general we can make final conclusions now.

9.1 End Result and Performance

After all major features were described, we can combine them and their

corresponding performance into single table and see if we have met our goal. Let’s do not

forget that most of the players will prefer having some effects off while others will be turned

on, so in fact game will run faster than in our tests. Nonetheless, there can be various

hardware-dependent issues which will be discovered later. For our performance tests, we

have built a system with a NVidia GeForce 1070 video card running at 1920x1080 resolution

and here is what we’ve got:

54

Effect name Performance

MSAA Off, SMAA 1x 0.917ms

MSAA 4x, SMAA Off 0.780ms

MSAA 4x + SMAA 1x 0.950ms

MSAA 8x, SMAA Off 0.982ms

MSAA 8x + SMAA 1x 1.250ms

Procedural Sky (without reflections) 0.418ms - 1.578ms

Procedural Sky (with reflections) 1.733ms – 2.760ms

SSAO Normal 1.316ms

SSAO Temporal 0.933ms

SSAO Normal + Sub-views reprojection 1.333ms

SSAO Temporal + Sub-views reprojection 0.953ms

Volumetric Lighting 0.917ms

Parallax Mapping 0.120ms

Post Effects 0.880ms

Table 1: Performance of main shaders

So, returning back to sub-views reprojection feature, we can see that SSAO gets only

~0.02ms slower when RT camera is active which is very good result. If we had SSAO re-

rendered for sub-views we would have wasted additional millisecond on it. As for procedural

sky, you can see that speed is heavily dependent on complexity of sky scenery. When there

are a lot of cloud types and height variations on screen the shader may slow down to 3ms, but

we are trying to keep such sceneries for more open, fewer detailed maps to compensate

performance loss. SMAA itself takes about a millisecond to render, but when combined with

hardware MSAA you can see that 4x MSAA + SMAA 1x can save you about 0.03ms of rendering

time. Not much, though, but it depends on scene’s complexity as well and still way faster than

8x MSAA + 1x SMAA while visual difference between them is negligible. Parallax mapping

turned out to be the fastest shader here, but it’s mostly due to clever usage of it on maps and

setting up shader parameters by artists and level designers. Volumetric Lighting is one of few

shaders, which had no major issues with optimizing and doesn’t require any special settings

per-map, it takes almost 1ms to render mostly because of CSM shadowmap texture reads, but

in general it works fast enough.

HDR rendering pipeline is not mentioned in the table, but it takes ~0.5ms of rendering

time. Resulting performance of all custom effects is ~7ms in total – this is not really fast, all

these shaders can work faster on newer DirectX APIs or Vulkan, but for now we are trapped

with DX9 API and have to live with it for some while. Nonetheless, we have met our goal –

FPS never goes below 60 even in not fully optimized maps on NVidia GeForce 1070 at

1920x1080 with all settings maxed out. Game was also tested on various AMD hardware and

confirmed working well there too.

In the end, I can say that I was happy working on all these shaders and brainstorming

optimization tricks, it gave me the most valuable experience. Now it’s time to move forward

and work with newer APIs on way more advanced techniques.

55

9.2 Future Work

Originally, there were more tech we wanted to have in MCV than actually made it to

our game. One of them was NVidia PCSS. This technique aimed to create realistic looking

shadows by using various blur kernels depending on how far shadow caster and receiver are

from each other (Myers, Fernando, & Bavoil, 2008). The best way to test it was to import

original Half-Life 2™ map, because it has many scenes where different shadow angles and

atmosphere settings can be seen. On example below (figure 68) there is scene with tall trees

casting shadows on the ground:

Figure 68: Original imported Half-Life 2™ scene with CSM shadows

Figure 69: Original imported Half-Life 2™ scene with CSM shadows and PCSS on

56

As you can see on figure 69, PCSS shader makes shadows from tall trees very blurry

and gets them very close to pure lightmapped variant, but dynamic. This is actually looking

good and this is how it’s supposed to look in real life, but, unfortunately, there are many

artifacts and conflicts with how our scenes are built. For example, shadows are now missing

many details, like ropes or subtle shadows from smaller objects. Moreover, blur from distant

shadow tend to leak over nearby shadows and blur them even if they shouldn’t be blurred.

This is because single shadow map cannot store values from multiple blockers, hence only

farthest blocker will be taken in account. Here appears a performance impact, caused by

requirement of using very wide Poisson disks, which are not hardware-accelerated, obviously.

While giving results close to real-life effects, we still have to search for another soft shadow

algorithm.

Physically-based rendering. PBR was our dream for a long time already and couple

of years back I’ve decided to give it a go. Our PBR implementation has Image-Based Lighting

(IBL) support and using Metal/Roughness approach.

Figure 70: PBR lighting scene test

After first test version was made, we have immediately noticed how easy, fast the

shader is and how good it looks. Such effects as Phong Lighting or flashlight, which are

separate techniques added (sometimes with hacks) on top of vanilla shaders and have various

issues with them, are now part of our PBR shader’s nature. Now there is no need to setup

dozens of shader parameters for each material and flashlight now is just another light source

with the same rights as any other light source in the map. Moreover, PBR shader works slightly

faster than vanilla LightmappedGeneric or Phong shaders. Everything looked very promising,

but we’ve met two major issues: first one is that 80% of our content was already made having

vanilla shaders in mind and recreating it would require additional time and work while visual

difference won’t be ground breaking. Second issue is our IBL implementation. To make our

PBR shader look as realistic as possible we have to put thousands of pre-filtered light probes

in our maps.

57

Figure 71: PBR Testing material

While generating a screen-space grid of light probes is possible, DX9 API is not

capable of filtering them. We can perform filtering on CPU, but it will obviously slow down

map compile time and since our future plans about PBR are yet to be determined, we have

postponed any work on this shader for now. All in all, our PBR implementation has potential

and we are definitely going back to it in the future.

Figure 72: PBR test lighting model

58

Figure 73: PBR test lighting model

Apart from these great major features, we have mostly to polish our existing shaders

and make sure they work on as wide variety hardware as possible. There is not much of what

else we can implement under existing API, moreover, adding new effects without any

particular reason would hurt performance and game’s look. In the future we are going to

switch our API and go with full Physically-Based Rendering.

59

References

Sal 'Sluggo' Accardo, Half-Life 2: The Lost Coast (2005) -
http://pc.gamespy.com/pc/half-life-2-lost-coast/662640p1.html

Gary McTaggart, HDR in Valve’s Source Engine (SIGGRAPH 2006) - https://steamcdn-
a.akamaihd.net/apps/valve/2006/SIGGRAPH06_Course_HDRInValvesSo

urceEngine_Slides.pdf

Epic Games, Unreal Engine 4 Documentation – Bloom (2014)
https://docs.unrealengine.com/en-

US/RenderingAndGraphics/PostProcessEffects/Bloom/index.html

John Hable, Filmic Tonemapping Operators (2010) -
http://filmicworlds.com/blog/filmic-tonemapping-operators/

Krzysztof Narkowicz, ACES Filmic Tone Mapping Curve (2016) –
https://knarkowicz.wordpress.com/2016/01/06/aces-filmic-tone-

mapping-curve/

Jorge Jimenez, NEXT GENERATION POST PROCESSING IN CALL OF DUTY: ADVANCED

WARFARE (2014) -
http://advances.realtimerendering.com/s2014/#_NEXT_GENERATION_

POST

Alexander Wilkie, Lukas Hosek, Predicting Sky Dome Appearance on Earth-like Extrasolar

Worlds, (2013) –
https://cgg.mff.cuni.cz/projects/SkylightModelling/sccg_2013_a

lien_sun_preprint.pdf

Sébastien Hillaire, Physically Based Sky, Atmosphere and Cloud Rendering in Frostbite, DICE,

(2016) – https://media.contentapi.ea.com/content/dam/eacom/frostbite/files/s2016-pbs-

frostbite-sky-clouds-new.pdf

A. J. Preetham, Peter Shirley, Brian Smits, A Practical Analytic Model for Daylight, (1999) -
https://www.graphicon.ru/oldgr/library/siggraph/99/papers/pree

tham/preetham.pdf

Andrew Schneider, Nathan Vos, THE REAL-TIME VOLUMETRIC CLOUDSCAPES OF HORIZON

ZERO DAWN (Siggraph, 2015) – https://www.guerrilla-games.com/read/the-
real-time-volumetric-cloudscapes-of-horizon-zero-dawn

Physically Based Sky, Atmosphere and Cloud Rendering in Frostbite, (SIGGRAPH 2016) -
https://blog.selfshadow.com/publications/s2016-shading-

course/hillaire/s2016_pbs_frostbite_sky_clouds.pptx

Fredrik HÄGGSTRÖM, Real-time rendering of volumetric clouds (2018) -
http://www.diva-

portal.org/smash/get/diva2:1223894/FULLTEXT01.pdf

http://pc.gamespy.com/pc/half-life-2-lost-coast/662640p1.html
https://steamcdn-a.akamaihd.net/apps/valve/2006/SIGGRAPH06_Course_HDRInValvesSourceEngine_Slides.pdf
https://steamcdn-a.akamaihd.net/apps/valve/2006/SIGGRAPH06_Course_HDRInValvesSourceEngine_Slides.pdf
https://steamcdn-a.akamaihd.net/apps/valve/2006/SIGGRAPH06_Course_HDRInValvesSourceEngine_Slides.pdf
https://docs.unrealengine.com/en-US/RenderingAndGraphics/PostProcessEffects/Bloom/index.html
https://docs.unrealengine.com/en-US/RenderingAndGraphics/PostProcessEffects/Bloom/index.html
http://filmicworlds.com/blog/filmic-tonemapping-operators/
https://knarkowicz.wordpress.com/2016/01/06/aces-filmic-tone-mapping-curve/
https://knarkowicz.wordpress.com/2016/01/06/aces-filmic-tone-mapping-curve/
http://advances.realtimerendering.com/s2014/#_NEXT_GENERATION_POST
http://advances.realtimerendering.com/s2014/#_NEXT_GENERATION_POST
https://cgg.mff.cuni.cz/projects/SkylightModelling/sccg_2013_alien_sun_preprint.pdf
https://cgg.mff.cuni.cz/projects/SkylightModelling/sccg_2013_alien_sun_preprint.pdf
https://media.contentapi.ea.com/content/dam/eacom/frostbite/files/s2016-pbs-frostbite-sky-clouds-new.pdf
https://media.contentapi.ea.com/content/dam/eacom/frostbite/files/s2016-pbs-frostbite-sky-clouds-new.pdf
https://www.graphicon.ru/oldgr/library/siggraph/99/papers/preetham/preetham.pdf
https://www.graphicon.ru/oldgr/library/siggraph/99/papers/preetham/preetham.pdf
https://www.guerrilla-games.com/read/the-real-time-volumetric-cloudscapes-of-horizon-zero-dawn
https://www.guerrilla-games.com/read/the-real-time-volumetric-cloudscapes-of-horizon-zero-dawn
https://blog.selfshadow.com/publications/s2016-shading-course/hillaire/s2016_pbs_frostbite_sky_clouds.pptx
https://blog.selfshadow.com/publications/s2016-shading-course/hillaire/s2016_pbs_frostbite_sky_clouds.pptx
http://www.diva-portal.org/smash/get/diva2:1223894/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:1223894/FULLTEXT01.pdf

60

Eric Risser, Musawir Shah, Sumanta Pattanaik, Interval Mapping (2007) -
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.5

935&rep=rep1&type=pdf

Gary McTaggart, Half-Life® 2 / Valve Source™ Shading (2004) -
http://www.decew.net/OSS/References/D3DTutorial10_Half-

Life2_Shading.pdf

Giliam de Carpentier, Reducing stretch in high-FOV games using barrel distortion (2015) -
https://www.decarpentier.nl/lens-distortion

Adrian Courrèges, DOOM (2016) - Graphics Study (2016) -
https://www.adriancourreges.com/blog/2016/09/09/doom-2016-

graphics-study/

Kevin Myers, Randima (Randy) Fernando, Louis Bavoil, Integrating Realistic Soft Shadows

into Your Game Engine (2008) -
http://developer.download.nvidia.com/whitepapers/2008/PCSS_Int

egration.pdf

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.5935&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.5935&rep=rep1&type=pdf
http://www.decew.net/OSS/References/D3DTutorial10_Half-Life2_Shading.pdf
http://www.decew.net/OSS/References/D3DTutorial10_Half-Life2_Shading.pdf
https://www.decarpentier.nl/lens-distortion
https://www.adriancourreges.com/blog/2016/09/09/doom-2016-graphics-study/
https://www.adriancourreges.com/blog/2016/09/09/doom-2016-graphics-study/
http://developer.download.nvidia.com/whitepapers/2008/PCSS_Integration.pdf
http://developer.download.nvidia.com/whitepapers/2008/PCSS_Integration.pdf

